
Journal of Applied Mechanics and Technical Physics, Vol. 44, No. 2, pp. 155–163, 2003

INSTABILITY OF AN INTERFACE BETWEEN STEEL LAYERS

ACTED UPON BY AN OBLIQUE SHOCK WAVE

UDC 534.222.2O. B. Drennov, A. L. Mikhailov,

P. N. Nizovtsev, and V. A. Raevskii

This paper reports results of experiments in which development of instability was observed on the
interface between two identical metals in tight contact with passage of an oblique shock wave through it.
Numerical modeling of experimental results was performed by a two-dimensional Lagrangian procedure
using an elastoplastic model with a functional dependence of the dynamic yield point on the state
variables of the material. The calculations showed that perturbations develop only in the presence of
a technological microgap of several tens of micrometers between the metal layers. Unloading of the
material behind the oblique shock front into the gap gives rise to a considerable short-term velocity
gradient. Simultaneously, near the interface behind the wave front there is a short-term loss of
strength of the material due to thermal softening and the heterogeneous nature of the deformation.
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Introduction. Hydrodynamic instabilities on interfaces between materials are of great theoretical and
practical interest. The instabilities of interfaces between dissimilar materials under high-velocity flow conditions
have long been known and have been studied on the bases of classical continuum mechanics. These studies are
of interest for various modern engineering applications, for example, for the solution of the problem of inertial
thermonuclear fusion. In particular, Kelvin–Helmholtz instability (shear instability) arises when the tangential
velocity-field component undergoes a discontinuity in a continuous medium, resulting in an exponential growth of
perturbations on the velocity-discontinuity surface [1].

Hydrodynamic instabilities have been adequately studied for liquids and gases. However, no adequate models
have been developed to describe the development of instability in media possessing strength, compressibility, and
viscosity, in particular, in metals.

Numerical modeling of instability development at an interface between metals under high-velocity oblique
collision was attempted in [2]–[4]; hypersonic conditions with oblique shock waves attached to the collision point
were studied in [5].

Development of perturbations at an interface between two metal specimens upon passage of a shock wave
with the front propagating at an angle to the interface (oblique shock wave) is most interesting in the case of
identical materials. In the case of dissimilar materials, the conditions of Richtmyer–Meshkov and Kelvin–Helmholtz
instabilities and, at an appropriate density ratio, Rayleigh–Taylor instability are satisfied. If two layers of the same
metal are in tight contact (lack of a gap), the interface should be stable. Indeed, if shear strength is ignored, such
an interface is fictitious, and flow singularities should not arise after shock-wave passage. If shear strength cannot
be ignored, slippage of one layer relative to the other along the interface is possible.

A special case of instability development is the experimentally observed development of periodic perturba-
tions on an interface between specimens of the same metal with passage of an oblique shock wave through it [6, 7].
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Fig. 1. Loading diagram: 1) explosive charge; 2) impactor;
3) disk; 4) shock-wave profile in the specimens; 5) ring;
6) holder; 7) bottom plate.

Analytical investigation of the process shows that if the metal layers are in tight contact, a velocity gradient
on the boundary is absent and perturbation propagation does not occur. Nevertheless, experiments revealed growth
of perturbations on the boundary between the metals, probably because of the presence of a microgap between the
real surfaces.

The present paper reports results of experiments in which perturbations developed on an interface between
specimens tightly pressed together and loaded by an oblique shock. In addition, the paper gives results of numerical
simulation of the indicated process that describe instability of the interface.

Experimental Setup. Experimental Results. A loading diagram is given in Fig. 1. A disk from St. 3
steel (diameter 64 mm and thickness 14 mm) was enclosed in a ring (inner diameter 64 mm, outer diameter 90 mm,
thickness 14 mm), which, in turn, was placed in a holder (inner diameter 90 mm, outer diameter 120 mm, and
thickness 14 mm). The disk, ring, and holder were mounted on a bottom plate (diameter 120 mm and thickness
20 mm). The holder and bottom plate were intended to protect the disk and the ring from the destructive action of
the lateral and rear rarefaction waves. All the above-mentioned parts of the experimental setup are made of St. 3
steel.

The specimens were loaded by a brass impactor 2–3 mm thick and 120 mm in diameter (impactors of different
thickness were used in different experiments), which was accelerated by explosion products from detonation of a
50/50 TNT/RDX explosive charge 20–40 mm thick and 120 mm in diameter (charges of different thickness were
used in different experiments). A plane detonation wave was generated simultaneously over the entire outer surface
of the explosive charge (section A–A in Fig. 1). According to estimates obtained using P–u diagrams and one-
dimensional gas-dynamic calculations, the shock pulse pressure at the entrance to the specimens was P = 40–55 GPa.
Considering the pulse decay, the pressure at the exit from the specimens was P = 36–49 GPa.

For a loading pressure P ≈ 13 GPa for St. 3 steel, account should be taken of the effect of a phase transition
and the presence of an “impact” rarefaction wave. The chosen pressure range of shock-wave loading allows experi-
ments to be performed with the material in a stable state. The process of perturbation development is short-term (a
few microseconds) and is completed before the beginning of the reverse phase transition. Therefore, the abnormal
behavior of St. 3 steel exhibited at P ≈ 13 GPa can be ignored.

Under the action of a lateral rarefaction wave, the impactor in flight takes a curved shape (the edges lag
behind the central zone). The shock-wave front is shown by a dashed curve in Fig. 1. Thus, the contact boundaries
of the examined specimens (sections B–B and C–C) are loaded by an oblique shock wave.

In all experiments, the development of perturbations was observed on the disk–ring interface (section B–B)
and the ring–holder interface (section C–C). Figure 2 gives photographs of microsections of the ring–holder interface
(Ds is the velocity of the shock-wave front in the metal and ψ2 is the slope of the front to the ring–holder interface).
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Fig. 2. Photographs of microsections of the ring–holder interface (×20): (a) the starting contact
boundary of the ring (even surface); (b) contact boundary of the ring after shock-wave loading.
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Fig. 3. Streak records(a) and an x-ray photograph (b) of the loading process by the diagram pre-
sented in Fig. 1.

The nearly sinusoidal perturbations have an amplitude a ≈ 0.06 mm and a wave length λ ≈ 0.7 mm. An
drastic change of the starting structure of the steel is observed in the near-interface zone with a width ∆ ≈ 0.02 mm.

The shape of the shock-wave pulse entering the specimens was studied in a separate series of experiments.
The free-surface profile of the flying impactor was recorded at the moment of impact on the disk–ring–holder system
using a high-speed SFR-2M photorecorder operating in a streak mode (so-called flash-gap method [8]). A typical
shock-wave front shape at P ≈ 45 GPa is presented in Fig. 3a.
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From results of processing typical streak records it follows that the shock wave enters the disk–ring interface
at an angle ψ1 ≈ 80◦ and the ring–holder interface at an angle of ψ2 ≈ 70◦ (see Fig. 1). Therefore, the interface is
loaded by an oblique shock wave.

For a more detailed examination of the mechanism of relative displacement of the metal layers, the dynamic
loading of the system and its subsequent motion were recorded on x-ray photographs at various times. Separate
phases of motion of the elements of the system can be determined after arrival of the shock wave at the rear surface
of the bottom plate. The mean velocity of motion of the ring relative to the holder is ∆U ≈ 0.1 mm/µsec. After
the ring is detached from the holder under the action of a lateral rarefaction wave, they fly by inertia at a mean
velocity ∆U ≈ 0.04 mm/µsec. A decrease in the velocity ∆U is due to the spall fracture of the bottom plate. The
spalled fragment takes most of the kinetic energy of the system. Figure 3b shows an x-ray photograph of the system
at the stage of inertial flight.

Numerical Simulation of the Loading Process. The passage of an oblique shock wave through an
interface between two identical metal specimens was studied by numerical calculations using a two-dimensional
Lagrangian procedure [9]. The shock-wave parameters and the orientation of the front relative to the interface
correspond to the data of the experiment in which perturbation growth was observed. The shock front pressure is
P = 45 GPa. The shock wave entered the interface an angle ψ = 70◦.

The numerical simulation was performed using an elastoplastic model with a functional dependence of
the dynamic yield point on the state variables of the material (plastic strain rate, pressure, temperature). The
relationship between the spherical components of the strain and stress tensors was derived using the Mie–Grüneisen
equation of state:

P = Pc + Pth = (ρ0c
2
0/n)(ηn − 1) + ΓρEth, η = ρ/ρ0, Γ = Γ∞ + (Γ0 − Γ∞)/ηm.

Here ρ0 is the density at T = 0, c0 is the volume velocity of sound at T = 0, Γ is the Grüneisen coefficient dependent
on density, Eth = cV T is the thermal energy, where T > TD (TD is the Debye temperature). The elastic component
of the internal energy is expressed as

Ec =
∫
Pc

dη

η2
.

The relationship between the stress-deviator components σ′ij and the elastic-strain deviator components ε′eij
is given by the relations

σ′ij = 2Gε′eij .

The shear modulus G is calculated from the formula

G =
3(1− 2ν)
2(1 + ν)

ρc2V ,

where c2V = (∂P/∂ρ)S is the volume velocity of sound in the compresses state and ν is Poisson’s constant. The
dependence of ν on the state variables is determined by analysis of experimental data on the relation between the
longitudinal cL and volume cV velocities of sound in the shock-compressed state:

ν = (3− (cL/cV )2)/(3 + (cL/cV )2).

The melting point is determined from the Lindemann law at constant heat capacity

d (lnTm)
d (ln ρ)

= 2(Γ− 1/3).

The dependence of the dynamic yield point Yd on the pressure P , plastic-strain rate εpi , and temperature T is given
by

Yd = (Y0 + αP )(1− Eth/Em).

where Y0 = 0.45 GPa, α = 0.05 are constant values, and Em is the energy of melting of the material.
The geometry of the computational domain (Fig. 4) was close to the geometry of the experimental assembly.

On the boundaries y = 0 and y = L2, we imposed the rigid-wall condition. In the zone of interfaces, the characteristic
size of the computational mesh is 5 µm. An oblique shock wave was simulated by constant pressure on the left
boundary of the computational domain P = 45 GPa; i.e., in the computational scheme, a shock wave with a
constant pressure P at the front was formed at the time t > 0. The calculations were performed for various
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Fig. 4. Computational domain (P = 45 GPa, L1 = L2 = 5 mm, and ψ = 70◦).
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Fig. 5. Relative velocity of the material along the interface (∆ = 40 µm): (a) projection onto the x axis; (b) projection
onto the y axis.

magnitudes of the gap ∆ between the surfaces. In the first series of calculations, a gap was absent, and the absolute
slippage condition was specified on the interface; i.e., along the interface, the discontinuity of the shearing stress was
equal to zero. These calculations yielded a small (smaller than the experimental perturbation wavelengths) relative
displacement of the surfaces due to the lack of shear resistance along the gap. The relative velocity of the surfaces
had a pulsed nature (U = 0.1–0.2 mm/µsec and ∆t ≈ 0.03 µsec). For such parameters, the growth of perturbations
with the wavelength recorded in the experiments λ ≈ 0.7 mm was inappreciable. Indeed, even in the hydrodynamic
approximation [10],

a/a0 ≈ cosh (∆U∆t 2π/λ) ≈ 1 + (∆S π/λ)2,

where ∆S is the relative displacement of the layer surfaces. In this case, a/a0 ≈ 1.
An incorporation of the gap into the computational scheme led to an increase in the rate of the relative

displacement of the surfaces even in the case of their absolute friction, i.e., the shearing stress could reach a value
τmax ≈ 0.5Yd. In the calculations with a gap, the yield point was considered low (Yd = 0.1 GPa); i.e., the materials
behave themselves as fluids with the equation of state of iron.

Figure 5a gives a curve of the projection of the material’s velocity onto the direction of the interface at
boundary points of the section versus the coordinate x at the moment when the shock wave traveled a distance
x = 2.25 cm.
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Fig. 6. Fragment of the computational domain at the moment the shock wave
traveled a distance x ≈ 2.5 cm.

The magnitude of the gap ∆ = 40 µm is the maximum possible for articles worked to the sixth class of surface
finish and is equal to the total depth of the largest two cavities on the top and bottom plates aligned coaxially.

The maximum velocity is attained directly ahead of the shock-wave front and is Umax ≈ 4 mm/µsec, which
is almost four times higher than the mass velocity of the material behind the shock-wave front. The reason for such
a velocity jump in the gap is the unloading of the material into the gap. The subsequent closure of the gap and
deceleration of the unloaded material leads to a decrease in the velocity to the mean mass velocity U ≈ 1 mm/µsec in
a time ∆t ≈ 0.15 µsec. The velocity jump gives rise to a short-term velocity gradient in the direction perpendicular
to the interface. Figure 5b shows the material’s velocity projection along the interface versus the y coordinate at
x ≈ 2.2 cm, i.e., in the section in which the highest velocity value is observed. From Fig. 5b it follows that in
the contact area there is a considerable velocity gradient ∆U ≈ 3 mm/µsec in the direction perpendicular to the
interface.

In the region separated from the boundary by ∆y ≈ ±0.25 mm, the velocity gradient reaches a value
∂U/∂y ≈ 10 µsec−1. In the remaining region, a velocity gradient is absent. The velocity gradient in the region
∆y ≈ ±0.25 mm should lead to growth of perturbations whose wavelength is greater than the width of this region,
i.e., λ > 0.25 mm. The calculations predicted the growth of propagation of exactly this wavelength: λ = 0.2–0.3 mm.
Let us estimate the possible increase in the amplitude of these perturbations over the characteristic time of operation
of the velocity gradient pulse ∆t ≈ 0.15 µsec (λ ≈ 0.3 mm and ∆U = 3 mm/µsec):

a/a0 ≈ cosh (∆U∆t π/λ) ≈ 60.

Thus, in the hydrodynamic approximation, a considerable growth of perturbations with wavelengths
λ > 0.3 mm is possible. Perturbations with a wavelength λ = 0.7 mm build up more weakly: a/a0 ≈ 4.

Figure 6 presents a fragment of the computational domain at the moment when the shock wave traveled a
distance x ≈ 2.5 cm. From Fig. 6 it follows that closure of the gap gives rise to waves with a characteristic length
λ = 0.2–0.3 mm, which corresponds to the width of the velocity gradient region and is close to the characteristic
dimension of the perturbation at the shock-wave front that results from the presence of the gap.

Calculations with the yield point dependent on pressure and thermal energy were also performed. Such
dependences for steel were obtained from results of measurements using the principal stress method [11].

In calculations without assigning initial perturbations, perturbation growth was not observed. Neither did
development of perturbation occur when initial sinusoidal perturbations with an amplitude a0 = 10 µm, corre-
sponding to moderate surface finish, and wavelengths λ = 0.46, 0.7, and 1.2 mm were assigned on the surface of
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Fig. 7. Fragment of the computational domain with indication of the distribution of the relative
thermal energy (∆ = 20 µm).

one of the specimens. Probably, the reason for perturbation growth in a real system is a short-term decrease in
shear strength behind the shock-wave front due to the formation of a system of localized shear bands with increased
heating.

To verify this hypothesis, we performed calculations in which the yield point was artificially understated and
given by

Y = 0.045(1− Eth/Em) [GPa].

In the calculations, perturbations with wavelengths λ = 0.46 and 0.7 mm increased by a factor of about 2.5.
No growth in perturbations with larger wavelength (λ = 1.2 mm) was observed. In these calculations, the magnitude
of the initial gap was ∆ ≈ 20 µm, which corresponds to the case where one surface having initial perturbations was
actually pressed to the other.

Figures 7 and 8 give calculated configurations of the system after shock-wave passage with indication of the
distributions of the relative thermal energy Eth/Em and the plastic strain rate ε, respectively. In the calculations,
the width of the large strain zone is close to the experimental value (20–30 µm).

Besides growth in assigned perturbations, the calculations with a gap ∆ ≈ 40 µm predicted the occurrence
of short-wave perturbations (λ = 0.2–0.3 mm), which agrees with the previous calculations without assignment of
initial perturbations (Fig. 9).
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Fig. 8. Fragment of the computational domain with indication of the strain rate distribution
(∆ = 20 µm).
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Fig. 9. Fragment of the computational domain with indication of the distribution of the relative
thermal energy (∆ = 40 µm).
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It should be noted that the probability of instability development exists in the case where the interface
between two metals separated by a similar microgap is loaded by a plane shock wave. However, experiments on
loading steel plates by a shock wave with the front parallel to the interface at pressure amplitudes P = 36–55 GPa
did not reveal development of perturbations on interfaces worked initially to the sixth and lower (to the third class)
classes of surface finish; i.e., the magnitude of the gap was ∆ = 20–80 µm.

Obviously, a decrease in the strength of the metal layers in contact during development of large plastic shear
strains behind the front of an oblique shock has a significant effect on instability, unlike in the case of loading by a
plane shock wave.

Conclusions. Thus, the calculations showed that the most probable reason for the development of per-
turbations during passage of an oblique shock wave through the interface of identical metals is the presence of a
small microgap ∆ = 20–40 µm. The presence of such gaps is possible when the articles are worked to the stan-
dard sixth class of surface finish (10 µm 6 2a0 6 20 µm). The gap leads to the occurrence of a considerable
but short-term velocity gradient along the interface, which, in turn, is responsible for perturbation propagation.
However, to recognize this explanation valid, one should also assume that short-term softening of the material due
to the heterogeneous nature of the deformation occurs behind the shock-wave front. It remains to explain the fact
that in the experiments, perturbations of a particular wavelength (λ = 0.7 mm) grow, whereas in the calculations,
growth of shorter-wave perturbations (λ = 0.2–0.3 mm) is also observed. The calculation yielded a spectrum of
perturbation wavelengths, whereas the experiments revealed a single perturbation wavelength.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 02-01-00796).
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